Previous Topic

Next Topic

oGK_IV( ) - Garman Kohlhagen Implied Volatility Function

Component

Resolution - Vanilla Options

 

 

Function Definition

oGK_IV(CallPut, OptionValue, ValueDate, MaturityDate, Spot, Exercise, RiskFree_D, RiskFree_F)

Uses the Newton-Raphson iteration procedure to calculate the implied volatility value that equates the given market price of the option with the Garman Kohlhagen model price of the option. Returns the implied volatility only.

 

 

Option Types

European options on Currencies.

 

 

Function Parameters

 

Parameters

Description

 

Parameter Type

 

Restrictions

.

CallPut

 

Option type.

 

Enumerated Constant

 

1 - Call
2 - Put

OptionValue

 

Current market price of the option.

 

Double

 

Option Value > 0

ValueDate

Valuation date of the option.

 

Date

 

ValDate < MatDate

MaturityDate

Maturity date of the option.

 

Date

 

MatDate > ValDate

Spot

 

Current exchange rate.

 

Double

 

Spot > 0

Exercise

 

Exercise rate of the option.

 

Double

 

Exercise >= 0

RiskFree_D

 

Risk free interest rate of the domestic country, entered as either a single rate (act/365) or a user defined zero curve object.

 

Double or Curve

 

RiskFree_D >= 0%

RiskFree_F

 

Risk free interest rate of the foreign country, entered as either a single rate (act/365) or a user defined zero curve object.

 

Double or Curve

 

RiskFree_F >= 0%

See Also

Parameter Types

oGK( ) - Garman Kohlhagen Function

oGK_IS( ) - Garman Kohlhagen Implied Spot Function

oGBS_IV( ) - Generalized Black Scholes Implied Volatility Function

oGK_IX( ) - Garman Kohlhagen Implied Strike Function

In This Section

oGK_IV( ) Example - Equity Put Option

Return to www.derivativepricing.com website

Copyright 2013 Hedgebook Ltd.