Previous Topic

Next Topic

oBS_IV( ) - Black Scholes Implied Volatility Function

Component

Resolution - Vanilla Options

 

 

Function Definition

oBS_IV(CallPut, OptionValue, ValueDate, MaturityDate, Spot, Exercise, RiskFree)

Uses the Newton-Raphson iteration procedure to calculate the implied volatility value that equates the given market price of the option with the Black-Scholes model price of the option. Returns the implied volatility only.

 

 

Option Types

European options on Stocks.

 

 

Function Parameters

Parameters

 

Description

 

Parameter Type

 

Restrictions

.

CallPut

 

Option type.

 

Enumerated Constant

 

1 - Call
2 - Put

OptionValue

 

Current market price of the option.

 

Double

 

Option Value > 0

ValueDate

 

Valuation date of the option.

 

Date

 

ValDate < MatDate

MaturityDate

 

Maturity date of the option.

 

Date

 

MatDate > ValDate

Spot

Current market price of the underlying asset.

 

Double

 

Spot > 0

Exercise

 

Exercise price of the option.

 

Double

 

Exercise > 0

RiskFree

 

Risk free interest rate, entered as either a single rate (act/365) or as a user defined zero curve object.

 

Double or Curve

 

RiskFree >= 0%

 

 

 

 

 

 

 

In This Section

oBS_IV( ) Example 1 - Equity Call Option

See Also

Parameter Types

oBS( ) - Black Scholes Function

oBS_IS( ) - Black Scholes Implied Spot Function

oGBS_IV( ) - Generalized Black Scholes Implied Volatility Function

oBS_IX( ) - Black Scholes Implied Strike Function

Return to www.derivativepricing.com website

Copyright 2013 Hedgebook Ltd.